
POINTER ARITHMETIC

ARRAYS, POINTERS AND STRUCTS

Problem Solving with Computers-I

https://ucsb-cs16-sp17.github.io/

Announcements

• Midterm next week Wed (05/12)

• All material covered in labs00-lab05 (including lab05). Key topics: file IO (only

those aspects covered in lab03), Pointers, arrays, pointers and structs,

function call mechanics (pass by value, reference and address), arrays of

structs

• All lecture material until Monday’s lectures

Review: Pointer assignment: Trace the code

3

int x=10, y=20;

int *p1 = &x, *p2 =&y;

p2 = p1;

int **p3;

p3 = &p2;

Two important facts about Pointers

4

1) A pointer can only point to one type –(basic or derived) such as int,

char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;

ptr doesn’t actually point to anything yet. We can either:

 make it point to something that already exists, or

 allocate room in memory for something new that it will point to

 Null check before dereferencing

 ar is a pointer to the first element

 ar[0] is the same as *ar

 ar[2] is the same as *(ar+2)

ar

100 104 108 112 116

20 30 50 80 90

 Use pointers to pass arrays in functions

 Use pointer arithmetic to access arrays more conveniently

Arrays and pointers

Pointer Arithmetic

int arr[]={50, 60, 70};

int *p;

p = arr;

p = p + 1;

*p = *p + 1;

Passing arrays to functions

int main(){

int arr[]={50, 60, 70};

}

int sum(int b[], int len){

}

Code to demonstrate how

arrays are passed to

functions

Which of the following is true after IncrementPtr(q)is called

in the above code:

void IncrementPtr(int *p){
p++;

}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(q);

A. ‘q’ points to the next element in the array with value 60

B. ‘q’ points to the first element in the array with value 50

How should we implement IncrementPtr(),so that ‘q’ points to 60

when the following code executes?

void IncrementPtr(int **p){
p++;

}

50 60 70

arr

q
int arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(&q);

A. p = p + 1;

B. &p = &p + 1;

C. *p= *p + 1;

D. p= &p+1;

Demo

• In class demo to show how you would create an array of structs, initialize them

and pass the array to a function (this relates to the last problem on hw 10)

Pointer Arithmetic Question

How many of the following are invalid?

I. pointer + integer (ptr+1)

II. integer + pointer (1+ptr)

III. pointer + pointer (ptr + ptr)

IV. pointer – integer (ptr – 1)

V. integer – pointer (1 – ptr)

VI. pointer – pointer (ptr – ptr)

VII. compare pointer to pointer (ptr == ptr)

VIII. compare pointer to integer (1 == ptr)

IX. compare pointer to 0 (ptr == 0)

X. compare pointer to NULL (ptr == NULL)

#invalid
A: 1
B: 2
C: 3
D: 4
E: 5

Pointer Arithmetic

What if we have an array of large structs (objects)?

C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array

element.

C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a

char, 4 bytes for an int, etc.

Complex declarations in C/C++

How do we decipher declarations of this sort?

int **arr[];

Read

* as “pointer to” (always on the left of identifier)

[] as “array of” (always to the right of identifier)

() as “function returning” (always to the right …)

13

For more info see:

http://ieng9.ucsd.edu/~cs30x/rt_lt.rule.html

Complex declarations in C/C++

Right-Left Rule

int **arr [];

Step 1: Find the identifier

Step 2: Look at the symbols to the right of the identifier. Continue right until you

run out of symbols *OR* hit a *right* parenthesis ")"

Step 3: Look at the symbol to the left of the identifier. If it is not one of the

symbols ‘*’, ‘(), ‘[]’ just say it. Otherwise, translate it into English using the table

in the previous slide. Keep going left until you run out of symbols *OR* hit a

left parenthesis "(".

Repeat steps 2 and 3 until you've formed your declaration.

14

Illegal combinations include:

[]() - cannot have an array of functions

()() - cannot have a function that returns a

function
()[] - cannot have a function that returns an array

Complex declarations in C/C++

15

int i;
int *i;
int a[10];
int f();
int **p;
int (*p)[];
int (*fp) ();
int *p[];
int af[]();
int *f();
int fa()[];
int ff()();
int (**ppa)[];
int (*apa[])[] ;

Next time

• Dynamic memory allocation

