Lecture 11

Wednesday, May 10, 2017 11:33 AM

G G
POINTER ARITHMETIC
ARRAYS, POINTERS AND STRUCTS

Problem Solving with Computers-| C++
GitHub

https://ucsb-cslé-spl7.github.io/

CS 16 Spring 2017 Page 1

Page 2

Wednesday, May 10, 2017 11:33 AM

Announcements

- Midterm next week Wed (05/12)

- All material covered in labs00-lab05 (including lab05). Key topics: file IO (only
those aspects covered in 1ab03), Pointers, arrays, pointers and structs,
function call mechanics (pass by value, reference and address), arrays of

structs
- All lecture material until Monday'’s lectures

CS 16 Spring 2017 Page 2

Page 3

Wednesday, May 10, 2017 11:33 AM

Inb * Y

A L ULy

e
Review: Pointer assignment: Trace the code

CS 16 Spring 2017 Page 3

Page 4

Wednesday, May 10, 2017 11:33 AM

Two important facts about Pointers ~-
Char 2 ()

I) A pointer can only point to one type —(basic or derived) such as int, R 5 -
char, a st ruct, another pointer, etc ?O |r\‘\' ! \ -

—_— ‘)“’)}k
2) After declaring a pointer: int *ptr; %V 1 \0 ‘) \\
ptr doesn’t actually point to anything yet. We can either:)/ .\(\\}v
~ make it point to something that already exists, or {\9(}
~ allocate room in memory for something new that it will point to WX\JP (U
\ 'P z &)

» Null check before dereferencing

N (omM6179i> P Y"&ﬁpn;
W L 'ﬂ?-’a S.)

. . --0)
AN 0> \'% ¢) \&(?m*‘”ﬁ

CS 16 Spring 2017 Page 4

Page 5
dnesday, May 10, 2017

I
gl t
33 Arrays and pointers Sat ar (5 _] S 320 /30,50, 05 i

\.
S m m e et | o or &
ar 0 . » 5 , .
= arisapointer to the first element LV\‘(\ K(_S ’P PD\
ar[0] is the same as *ar .
ar[2] is the same as * (ar+2) ::& // YV\O\
LN

= Use pointers to pass arrays in functions

= Use pointer arithmetic to access arrays more conveniently 9\“& A O\ (
-
ae (0}

Ao av ()

Page 6

Wednesday, May 10, 2017 11:33 AM

S \4\;1’rf"

Pointer Arithmetic

. ot \ 'S'U)“’)
int arr[]={50, 60, 70};

int *p;

P = arr;
p=p+1; ‘)('

*p = *p + 1;

B

CS 16 Spring 2017 Page 6

Page 7

Wednesday, May 10, 2017 11:33 AM

Passing arrays to functions

int main () {
int arr[]={50, 60, 70};

v ey sum ;S\A,W‘ (c\‘(\(/ 3 >

} .
int sum(int b[], int len)({ 'Ln\ ol > VoY et LS @
\'(\\". g2 N\ 10/. ot aa § \O
Por i 3205 T Clen) |
5 W‘— A" x k} Code to demonstrate how
v | N)
) rradi g

2 .}(U,\A“\ \{QSWH') e

CS 16 Spring 2017 Page 7

Page 8

Wednesday, May 10, 2017 11:33 AM

void IncrementPtr(int *pi}
p++;]—% PZP'\"
) N
wh maoa (
int arr[3] = {50, 60, 70};

int *q = arr;
IncrementPtr‘q);

!

|

50

60

70

arr
(%Vhich of the following is true after IncrementPtr (q) is called

in the above code:

A. ‘g’ points to the next element in the array with value 60

@ ‘g’ points to the first element in the array with value 50

CS 16 Spring 2017 Page 8

Page 9

Wednesday, May 10, 2017 11:33 AM

How should we implement IncrementPtr (), so that ‘q’ points to 60
when the following code executes?

void IncrementPtr(int **p){ \ /_\

} s

int arr[3] = {50, 60, 70}; q
int *q = arr;

p:prE.‘cV 50 | 60 | 70

CS 16 Spring 2017 Page 9

Page 10

Wednesday, May 10, 2017 11:33 AM

Demo

- In class demo to show how you would create an array of structs, initialize them
and pass the array to a function (this relates to the last problem on hw 10)

CS 16 Spring 2017 Page 10

Page 11

Wednesday, May 10, 2017 11:33 AM

Pointer Arithmetic Question

How many of the following are invalid?

l. pointer + integer (ptr+1)
Il. integer + pointer (1+ptr) #invalid
lll. pointer + pointer (ptr + ptr)

IV. pointer —integer (ptr — 1)

V. integer — pointer (1 — ptr)

VI. pointer — pointer (ptr — ptr)

VII. compare pointer to pointer (ptr == ptr)
VIIl. compare pointer to integer (1 == ptr)
IX. compare pointer to O (ptr == 0)

X. compare pointer to NULL (ptr == NULL)

HOQWp
b WN R

CS 16 Spring 2017 Page 11

Page 12

Wednesday, May 10, 2017 11:33 AM

e
Pointer Arithmetic

= What if we have an array of large structs (objects)?

= C++ takes care of it: In reality, pt r+1 doesn’t add 1 to the
memory address, but rather adds the size of the array
element.

= C++ knows the size of the thing a pointer points to — every
addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

CS 16 Spring 2017 Page 12

Page 13

Wednesday, May 10, 2017 11:33 AM

Complex declarations in C/C++

How d‘o we decipher declarations of this sort?
int **arr(];

Read

* as “pointer to” (always on the left of identifier)
ﬂ as “array of” (always to the right of identifier)
() as “function returning” (always to the right ...)

For more info see:
http:/ /ieng9.ucsd.edu/~cs30x/rt_lt.rule html

CS 16 Spring 2017 Page 13

Page 14

Wednesday, May 10, 2017 11:33 AM

Complex declarations in C/C++

lllegal combinations include:

R|g t- J_eft Rule
int **arr, @ [10) - cannot have an array of functions
()() - cannot have a function that returns a
function
Step 1: Find the identifier (] - cannot have a function that returns an array

Step 2: Look at the symbols to the right of the identifier. Continue right until you
run out of symbols *OR* hit a *right* parenthesis ")"

Step 3: Look at the symbol to the left of the identifier. If it is not one of the
symbols **, (), [I' just say it. Otherwise, translate it into English using the table
in the previous slide. Keep going left until you run out of symbols *OR* hit a
left parenthesis "(".

Repeat steps 2 and 3 until you've formed your declaration.

CS 16 Spring 2017 Page 14

Page 15

Wednesday, May 10, 2017 11:33 AM

Complex declarations in C/C++

int 1i;
int *i;
int afl1l0];
int £();

int **p;

int (*p) []7
int (*fp) ()~
int *pf[]
int af[]
int *f ()
int fal()
int f££()

int (*apa

CS 16 Spring 2017 Page 15

Page 16

Wednesday, May 10, 2017 11:33 AM

- @ @ @ @ @ @ @@ @@ @ @@ @@ @@
Next time

- Dynamic memory allocation

CS 16 Spring 2017 Page 16

