DYNAMIC MEMORY ALLOCATION
LINKED LISTS

https://ucsb-cslo-spl7.github.io/

Problem Solving with Computers-| ++
(: E GitHub
us:f“q qd:“e:\ D gace?®" :

Review: Structs, arrays of structs

Program layout in memory at runtime

A generic model for memory | ow address

Text

Global variables

Dynamic memory

Booo\loucn.l;oompo

High address

Creating data on the heap: new and delete

int foo() { Low address
int mycourse = 16; Text
cout<<“Welcome to CS”<<mycourse;

}

Global variables

Dynamic memory

High address

Linked Lists Array List

The Drawing Of List {1, 2, 3}

Stack Heap
head |_ N The overall list 1s built by connecting the
nodes together by their next pointers. The
nodes are all allocated in the heap. . .
P Linked List
Cl - (2 | L D
— 1 i
A “head” pointer local to Each node Each node stores The next field of
BuildOneTwoThree() keeps stores one one next pointer. the last node is
the whole list by storing a data element NULL.
pointer to the first node. (int in this

example).

1.

2.
3.
4

Accessing elements of a list

struct Node {
int data;
Node *next;

nead —>(1 | F—(

Assume the linked list has already been created, what do the following
expressions evaluate to?

neac
neac
neac

neac

3~

->data

->next->data
->next->next->data
->next->next->next->data

A. 1l

B. 2

C.3

D. NULL

E. Run time error

Creating a small list struct Node {

int data;

- Define an empty list Node *next;

- Add a node to the list with data = 10 };
J

Building a list from an array

LinkedList * arrayToLinkedList(int a[], int size) ;

Iterating through the list

Int lengthOfList(LinkedList * list) {
[* Find the number of elements in the list */

lIst

lheac tail

Deleting the list

Int freeLinkedList(LinkedList * list) {
/* Free all the memory that was created on the heap?*/

lIst

lheac tail
N0

Next time

- Dynamic arrays
- Dynamic memory pitfall

