
DYNAMIC MEMORY ALLOCATION

LINKED LISTS

Problem Solving with Computers-I

https://ucsb-cs16-sp17.github.io/

Review: Structs, arrays of structs

Program layout in memory at runtime

3

0

1

2

3

4

5

6

7

8

9

10

Global variables

Text

Low address

High address

Dynamic memory

A generic model for memory

Creating data on the heap: new and delete

4

Global variables

Text

Low address

High address

Dynamic memory

int foo() {
int mycourse = 16;
cout<<“Welcome to CS”<<mycourse;

}

Linked Lists

5

Linked List

Array List1 2 3

Accessing elements of a list

Assume the linked list has already been created, what do the following

expressions evaluate to?

1. head->data

2. head->next->data

3. head->next->next->data

4. head->next->next->next->data

A. 1

B. 2

C. 3

D. NULL

E. Run time error

head

struct Node {
int data;
Node *next;

};

Creating a small list

7

• Define an empty list

• Add a node to the list with data = 10

struct Node {
int data;
Node *next;

};

Building a list from an array

LinkedList * arrayToLinkedList(int a[], int size) ;

1 2 3

a

Iterating through the list
int lengthOfList(LinkedList * list) {

/* Find the number of elements in the list */

}

head tail

list

Deleting the list
int freeLinkedList(LinkedList * list) {

/* Free all the memory that was created on the heap*/

}

head tail

list

Next time

• Dynamic arrays

• Dynamic memory pitfall

