LINKED LISTS (CONTD)
DYNAMIC MEMORY PROBLEMS

Problem Solving with Computers-| c++
& GitHub

m



Linked Lists Array List

The Drawing Of List {1, 2, 3}

Stack Heap

head | , U The overall list is built by connecting the
nodes together by their next pointers. The

nodes are all allocated in the heap. Linked List

C/;- CD—=CD

A “head” pointer local to Each node Each node stores The next field of
BuildOneTwoThree() keeps stores one one next pointer. the last node 1s
the whole list by storing a data element NULL.

pointer to the first node. (int in this

example).



Creating a small list struct Node {

int data;

* Define an empty list
Pty Node *next;

- Add a node to the list with data = 10



Basic LinkedList Functions

LinkedList* createlLinkedList();
void insert(LinkedList* list, int value);



terating through the list

int lengthOfList(LinkedList x list) {
/* Find the number of elements in the list x/

list

\lhead tail

| NCD-CBCD




Review:

list head

tail

nat are the
nat IS storec
nat are the

= ===

How do we access the first element in the list?

D-CD2CD

nat is a linked-list?

nodes in a linked list?
in each node and why?

inks in the above diagram?



Accessing elements of a list

struct Node {

(D

int data;
Node *next;

Y-

/)

Assume the linked list has already been created, what do the following
expressions evaluate to?

1.

2.
3.
4

nead->data

nead->next->data
nead->next->next->data
head->next->next->next->data

A. 1

B. 2

C.3

D. NULL

E. Run time error



Searching for an element in the list

bool search(int value) {
// returns true 1f the element 1s in the list
// false otherwise.

list

\lhead tail




Delete node 2 in the list

list

head tall

—_—>

¢

e

}1

C

2

\5\

-

(>




Delete the list

int freeLinkedList(LinkedList % 1list);

list head tall

—
NC-CD




s B
Dynamic memory allocation

* To allocate memory on the heap use the ‘new’ operator
* To free the memory use delete

int *p= new int;

delete p;



Dangling pointers and memory leaks

» Dangling pointer: Pointer points to a memory location that no
longer exists
- Memory leaks (tardy free)

* Heap memory not deallocated before the end of program (more strict
definition, potential problem)

- Heap memory that can no longer be accessed (definitely a leak ,
must be avoided!)



Dynamic memory pitfall: Memory Leaks

- Memory leaks (tardy free)

Does calling foo() result in a memory leak? A.Yes B. No

void foo(){
int x p = new 1nt;



(): Which of the following functions results in a dangling
pointer?

int * f£fl(int num){
int *meml =new int[num];
return(meml) ;

int * £2(int num){
int mem2[num];
return(mem2) ;

A. f1l
B. £2
C. Both



Deleting the list

int freeLinkedList(LinkedList * list){..}

Which data objects are deleted by the statement: delete list;

list head tail

—_—>

(C) All nodes of the linked list

(D)B and C
(E) All of the above Does this result in a memory leak?



Next time

- Recursion
- Strings



