
LINKED LISTS (CONTD) 
DYNAMIC MEMORY PROBLEMS

Problem Solving with Computers-I

Linked Lists
2

Linked List

Array List 1 2 3

Creating a small list
3

• Define an empty list
• Add a node to the list with data = 10

struct Node {
 int data;
 Node *next;  
};

Basic LinkedList Functions
LinkedList* createLinkedList();
void insert(LinkedList* list, int value);

Iterating through the list
int lengthOfList(LinkedList * list) {
 /* Find the number of elements in the list */

}

head tail

list

Review:

head tail

list

What is a linked-list?
What are the nodes in a linked list?
What is stored in each node and why?
What are the links in the above diagram?
How do we access the first element in the list?

Accessing elements of a list

 Assume the linked list has already been created, what do the following
expressions evaluate to?
1. head->data
2. head->next->data
3. head->next->next->data
4. head->next->next->next->data

A. 1
B. 2
C. 3
D. NULL
E. Run time error

head

struct Node {
 int data;
 Node *next;  
};

Searching for an element in the list
bool search(int value) {
 // returns true if the element is in the list
 // false otherwise.

}

head tail

list

Delete node 2 in the list

head tail

list

Delete the list
int freeLinkedList(LinkedList * list);

head tail

list

Dynamic memory allocation
• To allocate memory on the heap use the ‘new’ operator
• To free the memory use delete

int *p= new int;
delete p;

11

Dangling pointers and memory leaks

• Dangling pointer: Pointer points to a memory location that no
longer exists

• Memory leaks (tardy free)
• Heap memory not deallocated before the end of program (more strict

definition, potential problem)

• Heap memory that can no longer be accessed (definitely a leak ,
must be avoided!)

Dynamic memory pitfall: Memory Leaks

• Memory leaks (tardy free)

 Does calling foo() result in a memory leak? A. Yes B. No

void foo(){
 int * p = new int;

}

Q: Which of the following functions results in a dangling
pointer?

int * f1(int num){
 int *mem1 =new int[num];
 return(mem1);
}

A. f1
B. f2
C. Both

int * f2(int num){
int mem2[num];
return(mem2);

}

Deleting the list

head tail

list

(A) (B)

(C) All nodes of the linked list

(D) B and C
(E) All of the above

int freeLinkedList(LinkedList * list){…}

Which data objects are deleted by the statement: delete list;

Does this result in a memory leak?

Next time
• Recursion
• Strings

