
 
RECURSION

Problem Solving with Computers-I 6

10

40

12

32 4743

45 41

Let recursion draw you in….

• Many problems in Computer Science have a recursive structure…
• Identify the “recursive structure” in these pictures by describing them

Understanding recursive structures
• Recursive names: The pioneers of open source and free software

used clever recursive names

GNU is NOT Unix
• Recursive structures in fractals

Zooming into a Koch’s snowflake

Sierpinski triangle

What was common to all these examples

A. Each can be described as smaller versions of itself
B. Each can be described as a collection of very different subparts
C. Each has an infinite instance of itself described within it
D. A and C

Why is recursion important in Computer Science
• Tool for solving problems (recursive algorithms)
• Solution is simply a recursive description of the problem
• Elegant (short and concise) algorithms
• Example of a recursive algorithm:

To wash the dishes in the sink:

Wash the dish on top of the stack

If there are no more dishes

you are done!

 Else:

 Wash the remaining dishes in the sink

Examples from Computer Science
Ask questions about data structures that have a recursive structure like trees:

• Find the sum of all the elements in this tree

• Print all the elements in the tree

• Count the number of elements in this tree
6

10

40

12

32 4743

45 41

Recursive description of a linked list

50 20 4010

head

• A non-recursive description of the linked list:
 A linked list is a chain of nodes

• A recursive description of a linked-list:
 A linked list is a node, followed by a smaller linked list

Sum all the elements in a linked list

50 20 4010

head

• A recursive description of a linked-list:
 A linked list is a node, followed by a smaller linked list

 Sum of all the elements in a linked list is:
Value of the first node +
Sum of the all the elements in the rest of the list

Let’s code it up

50 20 4010

head

double sumList(Node* head){

double sum = head->value + sumList(head->next);
 return sum;

}

What happens when we execute this code on the
example linked list?
A. Returns the correct sum (120)
B. Program crashes with a segmentation fault
C. Program runs forever
D. None of the above

Going down the rabbit hole ….

4050 2010

head

double sumList(Node* head){
 // Solve the smallest version of the problem
 // THE BASE CASE!!

 if(!head) return 0;
 // Go deeper into the rabbit hole!!
 // THE RECURSIVE CASE:
double sum = head->value + sumList(head->next);
// Come out of the rabbit hole

 return sum;
}

Find the min element in a linked list

double min(Node* head){
 // Assume the linked list has at least one node

 assert(head);
// Solve the smallest version of the problem

 // Write the BASE CASE

}
See code written in lecture for the complete solution

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion

For example

double sumLinkedLisr(LinkedList* list){
 return sumList(list->head); //sumList is the helper
 //function that performs the recursion.

}

Deleting the list

head tail

list

(A) (B)

(C) All nodes of the linked list
(D) B and C
(E) All of the above

int deleteList(LinkedList * list){
delete list;

}
Which data objects are deleted when the above function is called on the linked list
shown below:

Does this result in a memory leak?

Delete a node in a linked list

50 20 4010

head

Write code to iteratively delete the node

Given: a pointer to the first node
 : a value to delete from the list

Delete a node recursively

50 20 4010

head

Given: a pointer to the first node
 : a value to delete from the list

Next time
• Final review and wrap up

